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Question 1 Begin a new page

@ Px)=(x+2)(x—1)x~3)
(1) Sketch y= P(x) showing the intercepts on the coordinate axes. .
1
(i1) On separate diagrams, sketch the graphs of y=|P(x)]|, y= P( | x [) .- = m
x

showing the intercepts on the coordinate axes and the equations of any asympiotes.

(b) (1) P(;r1 s yl) is a point on the curve y=e ™. The tangent to the curve at P passes through
the origin. Find the coordinates of P.

(ii) Find the set of values of the real number & such that the equation e * = kx has two
real and distinct solutions.

(¢) Consider the function f(x)=In(l+cosx), —27 <x<27, where x#7T, x#~T.
(1) Show that the function f iseven and the curve y= f(x) is concave down for all

values of x in its domain.
(ii) Sketch the graph of the curve y= f(x).

Question 2 _ Begin a new page

(2)  Find all the complex numbers z=a+ib, a, b real, such that |z [2 —iz = 16-2¢ .

(b) (i) Find JQJ" dr .
[

2
(ii) Find Ji+—xﬂ dx

Jc(x2 + l)
% 1
(¢} (i} Usc the substitution = tan £ to evaluate f _ dx .
o 1+0C0SXx+sinx
3
(i1) Hence use the substitution # = % — x toevaluyate j al , ax .
l1+cosx+sinx

o

1
@ @Iz, =J (1+2%)" dx, n=0,1, 2, .. showthat (2n+1)1 =2"+2u7
1]

for n=1, 2, 3,...

fAL]

(i1) Hence find a reduction formula for J = J sec™ x dx
0}

Marks



Question 3 Begin a new page

{a) Inan Argand Diagram, the point P representing the complex number 7 moves so that
|z - (1 +i)|=1. '

(1) Skelch the locus of P.
(ii) Shade the region where |z —(147)|<1 and 0 <arg(z -i)<Z

(b) Inan Argand Diagram, a regular hexagon ABCDEF, with the vertices taken in
anticlockwise order, has its centre at the origin O and vertex A at 7=2.

(1) Find the sctof values of Im(z) for points z on the hexagon.

(i) Find the set of vatues of |z| for points z on the hexagon.

(11i) If the hexagon is rotated 1n a clockwise direction about the origin through an angle
of 45°, find the value in modulus / argument form of the complex number which is
represented by the new position of the vertex C.

e 1
(¢) Il z=cos@ + isinf , show that for positive integers # , — = 2¢cosnf and
z

n o 1
7 — — = 2ismnf . Hence expand (z ) ( ~—] 10 show that

Z I

cos '@ + sin*@ = 1 (cos40+3).
(1) By letting x =cos 8 , show that the equation 8 2+ 8 (1 - xz)z =7 has roots
tcosfs. teosiy 12 .
(111) Deduce that c¢os ﬁ , COS % have a product of jT and a sum of E A

(1v) Hence or otherwise find a surd expression for cos 11’5 .

Marks
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Question 4 Begin a new page

yn

Qlascc@, btand )

x 2 2
= -2 =
{ a b
X pd y 2
The line / is a common tangent 1o the hyperbolas xy=¢?, el 1 with points
. of contact P and Q respectively.
(i) Considering / as a tangentto x y=c’ al I‘(ct . fr—), show / has equation x+1’y=2ct. 2
x 2 y'Z
(i1y Considering / as atangent to — — 5T = 1 at QfasecO,btan® )}, show [ has 2
a
, xsech y tan 8
equation - =1.
a b
8 —tan@ 1
(111) Deduce that e _ —— = —
a bt 2ct

(iv) Write the coordinates of @ interms of f, a4, b and ¢, and show that b*r* +4c% % -a*=0. 3
Deduce that there are exactly two such common tangents to the hyperbolas.

(v) Copy the diagram and use the symmelry in the graphs to draw in the second common 2
z 1 ]
tangent with points of contact R on xy=c” and § on x_z - ;—2 = 1.
a
Write the coordinatesof R and § intermsof 1, g, b and c.
(vi) Show that if PQRS is arhombus, then #° =a’ and deduce that 1% < 1. 2
(vii) Show that if PQRS isa square, then ¢*+2:>—1=0 and deduce that 2c*=gq?. 3

What is the relationship between the two hyperbolas if PQRS is a square ?



Marks
Question 5 Begin a new page

Fi ] 4
(a) I:J. xe'cosx dx and sz e cosx dx
0 Q
(1) Use integration by parts to show that /—J = —J xe sinx dx. 2
q
(1) Differentiate xe”™ and hence find J‘(x +1)e* dx. Hence or otherwise show that 2

T
I+J=—-r e”+J xe’sinx dr .
0

(iii} Evaluate [I. i

(b} (1) On the same diagram and without using calculus, sketch the graphsof y=¢™, y=—¢"* 3

and y=e “cosx, 0<x<2m. Shade theregionboundedby y=e™™, y=e¢ *cosx
and x=7n for x20.

(i1) The region shaded in (i) is rotated through one revolution about the line x =x. Use the 2
method of cylindnical shells to show that the volume of the solid of revolution is given by

V=27£J’ﬂ(7r—x)e'x (1—cos x) dx.

(iit) Use the substitution x=7 ~x to show V=27me™ {J ue" du + I}, where [ is 2
1}
as defined in (a).
(1v) Hence find the volume of the solid. 3
Question 6 Begin a new page

An object of mass m kg is dropped from rest from the top of a ¢liff 40 m above
the watcr. Before the object reaches the water, the resistance to its motion has .

magnitude Tlﬁmv when the object has speed v ms™'. After the object enters the

water, the resistance to its motion has magnitude {mv*. Take g=10ms™.

(a) (1) Write an expression for X before the object enters the water, where x meires is 1
the distance the object has fallen in ¢ seconds.

(i) Show 102 - 100—v
dx

. and show that the speed of the object as it enters the 3
v

. - o |4 .
wateris Vms™ where V satisfies —V- + ln(l———) + 0-04 = 0.
100 100

(i1} Show this equation has a solution for V between 20 and 30, and taking 25 as 3
a first approximation, use Newton's Method to show that V = 25-7 to one
decimal place.



Marks
Question 6 continued

{b) (1) Wnilc an expression for i after the object enters the water. Deduce the object slows 3
on cntry to the water, and find its terminal velocity in the water.

d :
(n) Show that  scconds after entering the waler 10-(-5 = 100 —v*, and the velocity 3

(v +10)V —10)
(v 10XV +10)

vms™ of the object is given by 27 = ln{ } . where V isthe velocity

on cntry to the water calculated in (a). _ _
(1) How long after 1t cnters the water will the body slow 10 105% of its terminal velocity ? 2

Question 7 Begin a new page

(a)

A 1s a point outside a circle with centre O P is a second point outside the circle
such that PT = PA where PT isatangent to the circle at 7. AQ cuts the circle at
D and C. PC cuts thecircleat B. A B cuts the circle at E.

(1) Copy the diagram.
(i) Show that APBT N APTC. 2
(111) Show that AAPB (Il ACPA. 3
(iv) Hence show that DE 1s parallel to AP. 3
(b)  Asequence u,, u,, u,, ... isdelined by u, =2, #,=12 and

u,=6u,_, ~8u _, for n23. "
(i) Use Mathematical Induction to show that #,_ =4"— 2" for p>1. 4
(IF S, =wu+u,+a,+ .. +u, , findan expression for S, in the form

S =a2®™? 4 p2" 4+ ¢ wherc a, b, ¢ are numerical constants. 3



Question 8 Begin a new page

dy

(a) 1) Giventhat y=x ~ In(secx+tanx), 0< x < £, showthat — = ] ~secx.
¥ 2 dr

s

(i1) Hence show that x < In (secx +tanx) for 0< x < 7.

sin{A + B) —sin(A - B)

(b) (i) Show that - = cos A,
2sin B
(1) Hence show that
in2
cos x +cos3x +cos Sx +...+ cos(2n -3)x +cos(Zn—1)x = s;n' 2
sinx

T .
7 sin8x
{iii) Hence evaluate -
s Sinx

(c) (1) Find the values of the constants A and B such that
axt+1= (2.1:2 +Ax+ 1)(2x2 + Bx+ 1)

(ii) Hence find the prime factors of the integer 2'* +1.

Marks



