Mathematics Extension I CSSA HSC Trial Examination 2001 Marking Guidelines ### Question 1 (a) Outcomes Assessed: H5, H9 | | 9 | | | |---|---|--|--| | | 1 | | | | | - | | | | I | | | | | Criteria | Mark | |------------------------------|------| | rk for simplification of sum | 2 | ### Answer $$\sum_{k=1}^{4} (-1)^{k} k! = -1! + 2! - 3! + 4! = 19$$ # (b) Outcomes Assessed: P4 ## • one mark for values of gradients • one mark for value of $\tan \theta$ one mark for size of angle Marking Guidelines Criteria Marks w AB has gradient $$m_1 = 3$$ $\Rightarrow \tan \theta = \left| \frac{3 - \left(-\frac{1}{2}\right)}{1 + 3\left(-\frac{1}{2}\right)} \right| = 7$ $\therefore \theta = 81^{\circ} 52'$ # (c) Outcomes Assessed: (i) P5 (ii) PE3 # Marking Guidelines | | (ii) • one mark for showing remainder is -P(2) • one mark for value of remainder | |-------|---| | ω | (i) • one mark for showing $P(x)$ is odd | | Marks | Criteria | Answer: (ii) When $$P(x)$$ is divided by $(x+2)$, $$P(-x) = (-x)^5 + a(-x)^3 + b(-x)$$ $$= -x^5 - a x^3 - b x$$ $$= -(x^5 + a x^3 + b x)$$ $$= -(x^5 + a x^3 + b x)$$ $$= -P(x) \text{ for all } x$$ $$\therefore P(x) \text{ is odd.}$$ =-5 since P(2) = 5 2603 - 2 # (d) Outcomes Assessed: (i) (ii) PE3 (iii) PE3 (iv) H5, PE2, PE3 # Marking Guidelines | Criteria | Marks | |---|-------| | (i) • no marks for copying diagram | | | (ii) • one mark for reason | 87 | | (iii) • one mark for reason | 4 | | (iv) • one mark for showing $\angle MAB = \angle ABD$ | | | • one mark for showing $\angle ACB = \angle ACD$ | | ### Answer: - (ii) ∠ ACB = ∠ MAB because the angle between the tangent MA and the chord AB through the point of contact A is equal to the angle ACB in the alternate segment. - (iii) $\angle ACD = \angle ABD$ because the angles subtended in the same segment at B and C by the arc AD are $\angle MAB = \angle ABD$ (equal alternate angles, MN // BD) equal. $\angle ACB = \angle ACD (\angle MAB = \angle ACB, \angle ABD = \angle ACD)$: AC bisects \(\mathcal{L}BCD \) 3 ## Question 2 # (a) Outcomes Assessed: P7, PE5 | • One mark for tire derivative | |--------------------------------| | | ### Answer: $$\frac{d^2}{dx^2} e^{x^2} = \frac{d}{dx} 2x e^{x^2} = 2(e^{x^2}) + (2x)(2x e^{x^2}) = 2(1 + 2x^2) e^{x^2}$$ # (b) Outcomes Assessed: P4 $\frac{d}{dx}e^{x^2}=2xe^{x^2}$ ## Marking Guidelines | Criteria | Marks | |---|-------| | • one mark for equation in x | | | one mark for equation in y | J. | | one mark for coordinates of B | | ### Answer: $$\frac{5x - 3x(-1)}{5 - 3} = 14 \implies 5x + 3 = 28 \qquad \therefore x = 5$$ $$\frac{5y-3\times(4)}{5-3} = -6 \implies 5y-12 = -12 \qquad \therefore \ B(5,0)$$ # (c) Outcomes Assessed: PE3 # Marking Guidelines | Criteria | Marks | |--|-------| | one mark for number of arrangements of vowels one mark for number of arrangements of consonants | 3 | ### Answer: | positions | I he vower | |--------------------------------|------------| | 12 | - | | 4. | ŢŢ | | 0 | Ţ | | 4, 6, 8 | c | | 2. |) can | | $\frac{4!}{2!} = 12 \text{ w}$ | Па | | ways. | 2 | | | | The consonants (N,N, S, T, X) can be arranged in positions 1, 3, 5, 7, 9 in $\frac{5!}{2!} = 60$ ways. Hence the total number of arrangements is $12 \times 60 = 720$. # (d) Outcomes Assessed: (i) PE3, PE4 (ii) PE3 (iii) PE3 | Marking Guidennes | | |---|------| | Criteria | Mark | | i) one mark for equation of tangent | | | (ii) • one mark for coordinates of T | 4 | | one mark for coordinates of M | | | iii) • one mark for equation of locus | | ### Answer: (i) $$y = \frac{1}{4}x^2 \Rightarrow \frac{dy}{dx} = \frac{1}{2}x$$ \therefore tangent at $P(2t, t^2)$ has gradient $\frac{1}{2}(2t) = t$ and equation $y - t^2 = t(x - 2t)$ $tx - y - t^2 = 0$ (ii) At $$T$$, $y = 0 \Rightarrow tx - 0 - t^2 = 0 \Rightarrow x = t$ Hence T has coordinates $(t, 0)$, and M is the midpoint of $P(2t, t^2)$ and $T(t, 0)$, with coordinates $\left(\frac{2t+t}{2}, \frac{t^2+0}{2}\right) \equiv \left(\frac{3t}{2}, \frac{t^2}{2}\right)$ (iii) At $$M$$, $x = \frac{3t}{2} \implies t = \frac{2x}{3}$ $$\therefore y = \frac{1}{2}t^2 = \frac{1}{2}\left(\frac{2x}{3}\right)^2 = \frac{2x^2}{9}$$ Hence the locus has equation $2x^2 = 9y$. ### Question 3 # (a) Outcomes Assessed: (i) P4 (ii) PE3 | Criteria | Marks | |---|-------| | (i) • one mark for expansion and expressions for cos 2 A, sin 2 A | | | one mark for simplification to obtain final expression for cos 3A in terms of cos A | | | (ii) • one mark for expressing $2\cos 3A$ in terms of $\begin{pmatrix} x+1 \end{pmatrix}$ | | | (x) | v | | • one mark for himomial averagion of (1) | | | Circ in the for citivitial expansion of $(x+-)$ | | | • one mark for simplification to obtain final expression for cos 3.4 in terms of x | | ### Answer: $$\cos 3A = \cos(2A + A)$$ $$= \cos 2A \cos A - \sin 2A \sin A$$ $$= (2 \cos^3 A - 1) \cos A - (2 \sin A \cos A) \sin A$$ $$= 2 \cos^3 A - \cos A - 2 \sin^2 A \cos A$$ $$= 2 \cos^3 A - \cos A - 2(1 - \cos^2 A) \cos A$$ $$= 4 \cos^3 A - 3 \cos A$$ $$= x^3 + 3x + \frac{3}{x} + (\frac{1}{x})^3 - 3x - \frac{3}{x}$$ $$= x^3 + \frac{1}{x^3}$$ (b) Outcomes Assessed: (i) P5, HE4 (ii) P5, HE4 (iii) P4 # Marking Guidelines | | one mark for the graph of y = f⁻¹(x) and intercepts one mark for the line y = x passing through the point of intersection (iii) one mark for the equation one mark for the coordinates of the point of intersection | |-------|---| | 1 | (ii) • one mark for the graph of $y = f(x)$ and intercepts | | | one mark for the domain of the inverse function | | Marks | Criteria | ### Answer: $$y = \sqrt{x+6}$$ Interchanging x and y $$y^{2} = x+6$$ gives $y = x^{2}-6$ $$x = y^{2}-6$$ $\therefore f^{-1}(x) = x^{2}-6$ Range of $f(x)$ is $$\{y: y \ge 0\}$$ $$\{x: x \ge 0\}$$ (iii) Where $y = f(x)$, $y = f^{-1}(x)$, $y = x$ intersect, $$f^{-1}(x) = x \Rightarrow x^{2}-6 = x$$ $$x^{2}-x-6 = 0$$ $$(x+2)(x-3) = 0$$ But $x \ne -2$ (outside domain). $\therefore x = 3$ Hence intersection point of the curves is $(3,3)$. ## Question 4 | Criteria | Marks | |---|-------| | • one mark for establishing the truth of $S(1)$ | | | • one mark for $S(k)$ true $\Rightarrow 5^k + 2(11^k) = 3M$ for some integer M. | | | • one mark for $5^{k+1} + 2(11^{k+1}) = 5(5^k) + 22(11^k)$ | 5 | | • one mark for deducing $S(k)$ true $\Rightarrow S(k+1)$ true | | Define the sequence of statements S(n): $5^n + 2(11^n)$ is a multiple of 3, n = 1, 2, 3, ... Consider S(1): $5^{1} + 2(11^{1}) = 27 = 3 \times 9$:: S(1) is true. If S(k) is true, then $5^k + 2(11^k) = 3M$ for some integer M. ** Consider S(k+1): $S^{k+1} + 2(11^{k+1}) = S(S^k) + 22(11^k) = 5\{(S^k) + 2(11^k)\} + 12(11^k)$:. $5^{k+1} + 2(11^{k+1}) = 5(3M) + 12(11^{k}) = 3(5M + 4(11^{k}))$ if S(k) is true, using ** But M and k integral $\Rightarrow \{5M+4(11^k)\}\$ is an integer. \therefore S(k) true \Rightarrow S(k+1) true, k=1,2,3,... and so on. Hence by Mathematical Induction, S(n) is true for all positive integers n. Hence S(1) is true, and if S(k) is true, then S(k+1) is true. S(2) is true, and then S(3) is true, # (b) Outcomes Assessed: (i) H5 (ii) P5, H2 (iii) PE3 | Marking Guidelines | | |--|----------| | Criteria | Marks | | (i) • one mark for areas of small circle sector and triangle OPQ | | | one mark for equating expression for shaded area to if of large circle area | | | one mark for simplification to find equation in required form | ı | | (ii) • one mark for showing $f(0.5)$, $f(0.6)$ have opposite signs | _ | | • one mark for using continuity of $f(x)$ to deduce $0.5 < \alpha < 0.6$ | | | (iii) • one mark for expression for second approximation | 720 | | one mark for calculation of second approximation | S. Salar | ### Answer: Area small circle sector= $\frac{1}{2}(2^2) x$ Area of $\triangle POQ = \frac{1}{7}(4^2)\sin x$ \therefore shaded area = $8\sin x - 2x$ $8 \sin x - 2x = \frac{1}{16} \pi (4^2) = \pi$ $8\sin x - 2x - \pi = 0$ > Newton's method gives a second approximation $\alpha \approx 0.6 - \frac{f(0.6)}{ef(0.6)}$ $= 0.6 - \frac{8\sin(0.6) - 2(0.6) - \pi}{2}$ ≈ 0.56 to 2 decimal places. f'(0.6) $8\cos(0.6)-2$ (iii) Taking a first approximation $\alpha \approx 0.6$, some $0.5 < \alpha < 0.6$. Hence, since f(x) is continuous, $f(\alpha) = 0$ for f(0.5) = -0.31 < 0 and f(0.6) = 0.18 > 0. ## Question 5 # (a) Outcomes Assessed: HE6 Marking Guidelines | Criteria | Marks | |-------------------------------|-------| | one mark for change of limits | 32200 | | one mark for integration | | | one mark for evaluation | | Let $$I = \int_{1}^{\infty} \frac{1}{4(x+\sqrt{x})} dx$$ Then $I = \int_{1}^{7} \frac{1}{4(u^{2}+u)} 2u du$ $u^{2} = x$, $u > 0$ $$= \int_{1}^{7} \frac{1}{2(u+1)} du$$ $2u = \frac{dx}{du} \implies dx = 2u du$ $$= \frac{1}{2} [\ln(u+1)]_{1}^{7}$$ $x = 1 \implies u = 1, \quad x = 49 \implies u = 7$ $\therefore I = \frac{1}{2} (\ln 8 - \ln 2) = \frac{1}{2} \ln 4 = \ln 2$ # (b) Outcomes Assessed: H5 # Marking Guidelines | Criteria | Marks | |---|-------| | one mark for expressing sin²x in terms of cos 2x one mark for integration, including constant of integration one mark for evaluation of ∫(π/4), ∫(3π/4) one mark for value of difference | 4 | ### Answer: $$\frac{dy}{dx} = \sin^2 x$$ $$\Rightarrow \int (x) = \frac{1}{2}x - \frac{1}{4}\sin 2x + c$$ $$\Rightarrow \int (\frac{3\pi}{4}) - f(\frac{\pi}{4})$$ $$= \frac{1}{2}(1 - \cos 2x)$$ $$= (\frac{3\pi}{8} - \frac{1}{4}\sin \frac{3\pi}{4} + c) - (\frac{\pi}{8} - \frac{1}{4}\sin \frac{3\pi}{4} + c)$$ $$= \frac{3\pi}{8} + \frac{1}{4} + c - (\frac{\pi}{8} - \frac{1}{4}\sin \frac{3\pi}{4} + c)$$ $$= \frac{3\pi}{8} + \frac{1}{4} + c - (\frac{\pi}{8} - \frac{1}{4}\sin \frac{3\pi}{4} + c)$$ $$= \frac{3\pi}{8} + \frac{1}{4} + c - (\frac{\pi}{8} - \frac{1}{4}\sin \frac{3\pi}{4} + c)$$ $$= \frac{\pi}{4} + \frac{1}{2}$$ $= \left(\frac{3\pi}{8} - \frac{1}{4}\sin\frac{3\pi}{2} + c\right) - \left(\frac{\pi}{8} - \frac{1}{4}\sin\frac{\pi}{2} + c\right)$ $= \left(\frac{3\pi}{8} + \frac{1}{4} + c\right) - \left(\frac{\pi}{8} - \frac{1}{4} + c\right)$ # (c) Outcomes Assessed: (i) HE3 (ii) H5, HE3 # Marking Guidelines (ii) Let $f(x) = 8\sin x - 2x - \pi$. Then | | one main for the value of the spects. | |-------|--| | | • one mark for the value of the speed | | 4 | one mark for expressing v' in terms of x | | | ii) • one mark for expressing v^2 in terms of t | | | one mark for finding the period of the motion | | Marks | Criteria | | | | ### Answer: (i) Period is $$2\pi + \frac{\pi}{2} = 4$$ seconds $$x = 5\cos\frac{\pi}{2}t$$ $$v = \frac{dx}{dt} = 5\left(-\frac{\pi}{2}\sin\frac{\pi}{2}t\right)$$ $$v = \frac{dx}{dt} = 5\left(-\frac{\pi}{2}\sin\frac{\pi}{2}t\right)$$ $$v^{2} = \left(\frac{\pi^{2}}{4}\right) \cdot 25\sin^{2}\frac{\pi}{2}t$$ $$v^{2} = \left(\frac{\pi^{2}}{4}\right) \cdot 25\left(1 - \cos^{2}\frac{\pi}{2}t\right)$$ $$= \frac{\pi^{2}}{4}\left(25 - 25\cos^{2}\frac{\pi}{2}t\right)$$ $$v^{2} = \frac{\pi^{4}}{4}\left(25 - x^{2}\right)$$ $$x = 4 \implies v^{2} = \frac{\pi^{2}}{4}\left(25 - 16\right) = \frac{9\pi^{2}}{4}$$ Speed is $\frac{3\pi}{2}$ ms⁻¹ ### Question 6 # (a) Outcomes Assessed: (i) P4, HE4 (ii) HE4, HE5 (iii) H5 # Marking Guidelines | Criteria | Marks | |---|-------| | (i) • one mark for expression for θ | | | (ii) • one mark for expression for $\frac{d\theta}{dx}$ | | | • one mark for expression for $\frac{d\theta}{dt}$ | 5 | | (iii) • one mark for value of $\frac{d\theta}{dt}$ | | Answer: • one mark for value of θ $$\angle TAP = \theta$$ (alt. $\angle s$, parallel lines) $$\tan \theta = \frac{200}{x}$$ Ξ $$\frac{d\theta}{dx} = \frac{1}{1 + \left(\frac{200}{x}\right)^2} \left(-\frac{200}{x^2}\right) = \frac{-200}{x^2 + 40000}$$ $$\frac{d\theta}{dt} = \frac{d\theta}{dx} \cdot \frac{dt}{dt} = \frac{-200}{x^2 + 40000} (-80)$$ $$\therefore \frac{d\theta}{dt} = \frac{16000}{x^2 + 40000}$$ (iii) When $$\theta = \frac{\pi}{4}$$, $TP = AP \implies x = 200$, and $\frac{d\theta}{dt} = \frac{16000}{(200)^2 + 40000} = 0.2$ radians per second. $\theta = \tan^{-1} \frac{200}{x}$ Hence θ is increasing at 11° s⁻¹ (correct to the nearest degree) # (b) Outcomes Assessed: (i) HE5 (ii) H3, H5, HE4 (iii) HE3, HE7 # Marking Guidelines | Mark | Criteria | Marks | |--|--|-------| | (i) • one mark for expression for a in terms of x (ii) • one mark for expressing t as an integral with respect to x • one mark for integration to find t in terms of x | in terms of x In integral with respect to x It in terms of x | | | • one mark for expression for x^2 in terms of t | in terms of t | 7 | | (iii) • one mark for graph of x² as a function of t • one mark for limiting values of x, v, a • one mark for description of limiting behaviour in words | function of t x, v, a it no behaviour in words | | Answer: (i) $$a = \frac{d}{dx} \left(\frac{1}{x} x^2 \right) = \frac{1}{2} \frac{d}{dx} \left(\frac{1024}{x^2} - 32 + \frac{x^2}{4} \right)$$ $$\therefore a = \frac{-1024}{x^3} + \frac{x}{4}$$ $$\frac{x^{2}}{4} \qquad \frac{dx}{dt} = v = \frac{32}{x} - \frac{x}{2} = \frac{64 - x^{2}}{2x}$$ $$\frac{dt}{dx} = \frac{2x}{64 - x^{2}}$$ $$t = \int \frac{2x}{64 - x^{2}} dx$$ Ξ (iii) Cont. $$t = -\ln(64 - x^{2}) + c , \quad t = 0$$ $$-t = \ln\left(\frac{64 - x^{2}}{60}\right) , \quad e^{-t} = \frac{64 - x^{2}}{60}$$ As $$t \to \infty$$, $x \to 8^-$, $v \to \frac{32}{8} - \frac{8}{2} = 0^+$, $a \to \frac{-1024}{512} + \frac{8}{4} = 0^-$ Hence the particle is moving right and slowing down as it approaches its limiting position 8 metres to the right of $\,O$ ## Question 7 (a) Outcomes Assessed: (i) HE3 (ii) HE3 | Ma | Criteria | |---|---| | | (i) • one mark for value of probability | | and one 6 on second and two 6's on second 5 | one mark for expression for probability of no 6's on first roll and one 6's on second one mark for expression for probability of no 6's on first roll and one 6's on second one mark for expression for probability of no 6's on first roll and two 6's on second | ### Answer: - (i) $P(one \ 6 \ on \ first \ roll) = {}^4C_1 \left(\frac{1}{6}\right)^3 \left(\frac{5}{6}\right)^3 \approx 0.39$ (to 2 decimal places) - (ii) $P(\text{two } 6 \text{ s on first roll and no } 6 \text{ s on second roll}) = {}^4C_2(\frac{1}{6})^2(\frac{5}{6})^2 \times {}^2C_0(\frac{1}{6})^0(\frac{5}{6})^2 \approx 0.0804$ $P(\text{one } 6 \text{ on first roll and one } 6 \text{ on second roll}) = {}^4C_1(\frac{1}{6})^1(\frac{5}{6})^3 \times {}^3C_1(\frac{1}{6})^1(\frac{5}{6})^2 \approx 0.1340$ $P(\text{no } 6 \text{ s on first roll and two } 6 \text{ s on second roll}) = {}^4C_0(\frac{1}{6})^0(\frac{5}{6})^4 \times {}^4C_2(\frac{1}{6})^2(\frac{5}{6})^2 \approx 0.0558$ $\therefore P(\text{two } 6 \text{ s overall}) \approx 0.0804 + 0.1340 + 0.0558 \approx 0.27 \text{ (to 2 decimal places)}$ # (b) Outcomes Assessed: (i) HE3 (ii) HE3 (iii) P4, H2 (iv) P4, H2 # Marking Guidelines | | Criteria | Marke | |----------|---|-------| | Ξ | (i) • one mark for expressions for x and y in terms of θ and t | | | \equiv | (ii) • one mark for expression for y in terms of x | | | | • one mark for rearrangement as quadratic in $\tan \theta$ | | | \equiv | (iii) • one mark for discriminant in terms of X and Y | 7 | | | one mark for using discriminant > 0 to give required inequality | | | 3 | (iv) • one mark for the values of the sum and product of $\tan \alpha$, $\tan \beta$ in terms of X | | | | • one mark for the value of $\alpha + \beta$ | | ### Answer: - (i) $x = 50 t \cos \theta$ and $y = 50 t \sin \theta 5 t^2$ (ii) $t = \frac{x}{50 \cos \theta}$ $\Rightarrow y = x \frac{\sin \theta}{\cos \theta} - \frac{5x^2}{2500 \cos^2 \theta}$ $500 y = 500 x \tan \theta - x^2 \sec^2 \theta$ $= 500 x \tan \theta - x^2 (1 + \tan^2 \theta)$ $= 500 x \tan \theta - x^2 \tan^2 \theta$ $\therefore x^2 \tan^2 \theta - 500 x \tan \theta + (x^2 + 500 y) = 0$ - (iii) Projectile passes through the point (X, Y) if $\tan \theta$ satisfies the quadratic equation $X^2 \tan^2 \theta 500 \ X \tan \theta + (X^2 + 500 \ Y) = 0$ This equation has two distinct solutions for $\tan \theta$, and hence for θ , provided its discriminant $\Delta > 0$. $\Delta = (-500 \ X)^2 4 \ X^2 (X^2 + 500 \ Y)$ $= 4X^2 (62500 X^2 500 \ Y)$:. $\Delta > 0$ provided $500Y < 62500 - X^2$ (iv) If the projectile passes through the point (X, X) where $500 X < 62500 - X^2$, then the equation $X^2 \tan^2 \theta - 500 X \tan \theta + (X^2 + 500 X) = 0$ has two distinct real roots $\tan \alpha$, $\tan \beta$ where $\tan \alpha + \tan \beta = \frac{500}{X^2} = \frac{500}{X}$ and $\tan \alpha \tan \beta = \frac{X^2 + 500 X}{X^2} = 1 + \frac{500}{X}$ $\therefore \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha} = \frac{500}{X} + \left(-\frac{500}{X}\right) = -1$ Since $0 < \alpha + \beta < \pi$, $\alpha + \beta = \frac{3\pi}{4}$.